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ABSTRACT

This study quantifies the impact of typhoons on rice production in the Philippines. To this end, satellite-

derived reflectance data are used to detect the location of rice fields at 500-m resolution. Utilizing typhoon-track

data within a wind field model and satellite-derived precipitation measures, fragility curves are then employed

to proxy the damage of storms on rice production within each rice field. The results from a panel spatial re-

gressionmodel show that typhoons substantially reduced local provincial production in the quarter of the strike,

having caused losses of up to 12.5 million tons since 2001. Using extreme value theory to predict future losses,

the results suggest that a typhoon like the recent Haiyan, which is estimated to have caused losses of around

260 000 tons, has a return period of 13 years. This methodology can provide a relatively timely tool for rice

damage assessments after tropical cyclones in the region.

1. Introduction

Tropical storms cause considerable amount of damage

globally, estimated to be about $26 billion per year

(Mendelsohn et al. 2012). In this regard, the Philippines

is one of the most cyclone-prone countries in the

world.With;6–9 landfalling storms per year since 1970,

it currently ranks second only to China (Hurricane

Research Division 2015). One sector of the Philippine

economy that is particularly susceptible to these

extreme events is rice cultivation. More specifically,

typhoons can cause considerable damage to rice pro-

duction by exposing it to strong winds and excessive

rainfall. As amatter of fact, in a study of climate-induced

damage to the rice industry since 2007, Israel (2012)

estimated that typhoon damage constituted at least 70%

of the $276 million (U.S. dollars) of annual damage

caused by extreme weather events, including floods and

droughts. For a nation like the Philippines, for which

rice is the staple food for nearly 90%of the population—

providing half their calories and constituting 20% of

food expenditures—but which consumes more rice than

it produces and where rice accounts for nearly 25% of

national agricultural value added, these storms can thus

be of particular significance.

The Philippines government has, of course, been aware

of the vulnerability of its rice industry to typhoons for a

long time and has tried to address the issue through ex-

plicit policymaking. More specifically, the National Food

Authority1 (NFA)—the agency in charge of ensuring the

stability of the supply and price of rice—imports rice to

counteract production shortfalls predicted using sea-

sonal climate forecasts and agricultural production sur-

veys. These import decisions are typically adjusted on a

quarterly basis, procurement occurring twice a year, so

that imports after a final decisionmade in January arrive

between February and April, just before the rainy sea-

son. However, import orders are often readjusted when

major events, like a typhoon, cause unexpected pro-

duction shortfalls. For example, after Typhoon Haiyan

Corresponding author address: Eric Strobl, Dept. of Economics,

Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France.

E-mail: eric.strobl@polytechnique.edu

1 The NFA is the Philippine agency responsible for ensuring the
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public ones, carry a large in-quota tariff and thus generally are

only a small percentage of total rice imports.
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in November 2013, the NFA approved the import of a

further 355 000 tons of rice in addition to the 350 000

originally procured (Dela Cruz and Thukral 2013). An

important difficulty for the NFA in adjusting imports to

address shortages due to tropical cyclones is that orders

must bemade fairly quickly since filling them takes time.

However, immediate initial estimates of the actual

damage to rice production due to these storms tend to be

imprecise, and more accurate assessments have to rely

on time-consuming local surveys. In this paper, we

provide an approach that will allow more accurate and

immediate estimate of the impact of typhoons on rice in

the Philippines, which can help policymakers be more

effective in their response to these storms.

There is already a small but growing academic literature

that has attempted to statistically quantify the impact of

tropical cyclones on the agricultural sector. For instance,

Chen and McCarl (2009) examine the case of the United

States using county-level data of crop production and

hurricane intensity measured using the Saffir–Simpson

intensity categorization and find different effects across

crop types. Spencer and Polachek (2015), in contrast,

employ a hurricane incidence measure for Jamaica par-

ishes and similarly find different impacts for different

crops. Examining the Philippines, Israel and Briones

(2012) alternatively use the number of typhoons and the

incidence of a typhoon of different intensity levels but only

find very weak effects on rice production at the province

level. Similarly for the Philippines, Koide et al. (2013)

note a significant negative correlation between accumu-

lated cyclone energy and provincial rice production. Strobl

(2012) finds a negative effect of hurricanes on agriculture

in the Caribbean.

In contrast to the previous literature, our study melds

multiple methodological approaches to obtain a more

accurate estimate of the impact of cyclones on rice pro-

duction that will reduce measurement error. First, we

construct provincial-level estimates of rice damage from

localized rice fragility curves, which encompass damage

due to both wind and rainfall, rather than using storm

incidence or intensity measures. To this end, we take into

consideration the location-specific nature of tropical

stormdestruction, in terms of bothwind and precipitation

exposure and the rice fields they are likely to affect.2

More specifically, we first detect the location and growing

period of rice paddies at the 500-m level across the

Philippines by using satellite-derived information on

spectral reflectance and the detection algorithm de-

veloped by Xiao et al. (2002a). This approach allows for

the spatial and temporal variations in rice paddies at a

spatially detailed level. With the location of rice fields at

hand, we then measure local wind exposure using a wind

field model and local precipitation exposure during the

storm. Damage is then proxied using the fragility curves

estimated by Masutomi et al. (2012). Aggregating these

for each quarter at the provincial level and combining

them with provincial-level rice data allows us to then

statistically estimate the impact on rice production. Also

in contrast to the previous literature, we do so within a

spatial panel regression framework, which takes account

of both potential spatial correlation and spatial spillovers

across regions. Finally, we use extreme value theory to

predict future losses.

The remainder of the paper is organized as follows.

In the next section we describe the number of meth-

odologies employed in our analysis. Section 3 outlines

our datasets. Section 4 provides the details and dis-

cussion of results. Some final remarks are provided in

the last section.

2. Methods

a. Typhoon damage area index (DA)

As noted by Masutomi et al. (2012), typhoons can

result in two types of damage to rice. First, the strong

winds can cause the lodging, striping, and injury of plant

organs, as well as induce water stress due to enforced

transpiration. Second, continuous inundation due to

excessive rainfall can result in a decrease in photosyn-

thesis and respiration. In considering the impact of these

features, it is also important to recognize that the timing

of a typhoon relative to the growth stage of rice will

play a role in the extent of damage, where the resistance

of paddy rice to environmental change is typically lowest

during the heading stage. Masutomi et al. (2012) in-

corporate all of these aspects in constructing a rice fra-

gility curve for Japan. We follow the same methodology

to construct an index for the Philippines. More specifi-

cally, the probability of damage to an area i is assumed

to follow a Weibull distribution, as follows:3

Pr
ij
(I

ij
)5 12 e2(Iij/lij)

k

, (1)

where Prij is the probability that damage is caused by

intensity Iij of typhoon j in area i of intensity I, and k and

l are the shape and scale parameters of the Weibull
2 The only other study to do so is Strobl (2012), which uses

gridded 1-km cropland data from the Global Land Cover 2000

database to determine cropland location for the Caribbean, al-

though it does not distinguish between crop types. 3Masutomi et al. (2012) also explore alternative distributions.

994 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55



distribution, respectively. To take into account the fact

that damage is likely to be highest near the heading

stage, Masutomi et al. (2012) assume that the scale pa-

rameter l is a quadratic function of the number of days

between the day when the maximum wind speed is ob-

served Wij and the heading day HDij:

l
ij
5b(W

ij
2HD

ij
)2 1 c(W

ij
2HD

ij
)1 d , (2)

where b, c, and d are functional form parameters. The

typhoon intensity is defined as follows:

I
ij
5W

ij
1mP

ij
, (3)

where W is the maximum wind speed of the storm, P is

the accumulated rainfall during the storm, and m is a

translation parameter. Finally, the damage to area i at-

tributed to typhoon jDAij is equal to the product of the

probability of damage and the area planted at the time

of the storm PAi:

DA
ij
5Pr

ij
PA

i
. (4)

From (1)–(4), the parameters m, b, c, d, and k are

to be determined. To estimate these parameters,

Masutomi et al. (2012) use official estimates of rice

areas damaged by 42 typhoons in Japan and a down-

hill simplex method to minimize the error between

DA and reported damaged areas. Unfortunately, as

there is no similar damage data available for the

Philippines, we thus use their estimated optimum

parameters. More specifically, we assume that m 5
0.001 283, b 520.000 769 2, c 5 2.007, d 5 0.000 175 7,

and k 5 6.725. Thus with these parameters at hand and

measurements for observed maximum wind speed Wij

and accumulated rainfall Pij, one can calculate the dam-

age area DAij using (1)–(4) for every planted rice area i

due to storm j. To obtain normalizedmeasures ofDAdue

to typhoon j at the province level p we simply sum DA

within provinces relative to the total area planted in a

province:

DA
pj
5
�
i

Pr
ij
PA

i

�
i

PA
i

. (5)

This measure ranges between 0 and 1 and can also be

calculated on a temporal scale rather than just on a storm

by storm basis.

b. Rice field detection

The intensity of wind and rain experienced during a

typhoon is fairly heterogeneous even within a relatively

small area. Moreover, rice planting can change consid-

erably over space and time. It is thus important to detect

rice fields and measure subsequent potential damage

due to a storm at the most spatially disaggregated scale

as possible. Unfortunately, there is no consistent time

series of rice field location for the Philippines at a very

spatially disaggregated level available from statistical

sources.4 However, rice paddies possess unique physical

features that allow one to use satellite-derived images to

proxy field locations. More specifically, rice is first

transplanted on a field covered by between 2 and 15 cm

of water. The paddy surface is subsequently composed

of a combination of water and green growth until about

between 50 and 60 days after transplanting when the

canopy is totally covered by rice plants. Finally, the leaf

moisture and density decreases during the ripening

phase until harvest (Le Toan et al. 1997). Importantly,

these surface changes allow one to use satellite-derived

spectral reflectance data to detect the presence of rice

fields based on the temporal combination of the extent

of surface water and green vegetation.

To detect rice fields, we follow the methodology

detailed in Xiao et al. (2005) using imagery from the

Moderate Resolution Imaging Spectroradiometer

(MODIS) Surface Reflectance product (MOD09A1)

on board the Terra and Aqua satellites, which provides

500-m resolution land surface reflectance from seven

spectral bands every 8 days, available since 2000. More

specifically, one can use the near-infrared (NIR; 841–

876 nm) and red (620–670 nm) spectral bands re-

flectance r to calculate the normalized difference veg-

etation index (NDVI), which is highly correlated with

the leaf area index:5

NDVI5
r
NIR1

2 r
red

r
NIR1

1 r
red

. (6)

The enhanced vegetation index (EVI) reduces residual

atmospheric contamination and variable soil back-

ground reflectance by adjusting the reflectance in the red

band as a function of the reflectance in the blue band

(459–479 nm) and is defined as

EVI5 2:5

 
r
NIR1

2 r
red

r
NIR1

1 6r
red

2 7:5r
blue

1 1

!
. (7)

4 Time-varying spatial data on rice field location for the Philip-

pines are only available at the aggregate provincial level, with no

indication of how rice fields are dispersed within provinces.
5 In essence, the leaf area index is a quantitative measure of the

greenness of plant canopies.
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To account for water content, we calculate the land

surface water index (LSWI), which utilizes the short-

wave infrared (SWIR) spectral band (1628–1652 nm)

and is sensitive to leaf water and soil moisture (Maki

et al. 2004; Xiao et al. 2002a):

LSWI5
r
NIR1

2 r
SWIR1

r
NIR1

1 r
SWIR1

. (8)

One should note that these four indices all capture dif-

ferent aspects important of rice production. More spe-

cifically, NDVI is closely correlated to the leaf area

index of paddy rice fields. In contrast, the EVI accounts

for residual atmospheric contamination and variable

and canopy background reflectance. Finally, LSWI al-

lows one to capture water thickness.

Using the LSWI, NDVI, and EVI vegetation indices,

we follow the algorithm employed by (Xiao et al. 2002b,

2005, 2006), which focuses on detecting the flooding/

transplanting period and the first part of the crop growth

period leading to full canopy expansion. Rice paddy

flooding and transplanting is identified using a threshold

of either LSWI1 0.05$ EVI or LSWI1 0.05$NDVI.

For each flooded pixel, the identification of rice growing

is based on the assumption that rice canopy reaches its

maximum within 2 months (Xiao et al. 2002c).

Therefore, a flooded pixel is considered as a ‘‘true rice

pixel’’ if EVI reached half of the maximumEVI value of

the current crop cycle within 40 days following the

flooding/transplanting date.

Pixels having a high blue band reflectance ($0.2) but

not identified as clouds, which could lead to a false

identification of rice paddies, are also removed. Perma-

nent water bodies are distinguished from seasonal water

bodies, such as paddy rice, by analyzing the temporal

profile of NDVI andLSWI of each cell.More precisely, a

pixel is assumed to be covered by water if NDVI, 0.10

and NDVI , LSWI, and it is considered to be a persis-

tent water body if it was covered by water in 10 or more

8-day composite periods within the year. Natural ever-

green vegetation areas are also omitted from the analysis

to avoid confusing moist tropical regions and mangrove

forests, which tend to have similar temporal flooding

characteristics as paddy rice fields. In contrast to rice

paddies, evergreen forests exhibit consistently high

NDVI values throughout the year. Therefore, a pixel for

which NDVI$ 0.7 over at least twenty 8-day composites

during the year was considered an evergreen forest.

Since the NDVI forest restriction is a cumulative count,

we used a gap-filled product that corrects NDVI values

in the time series where clouds were present. In terms of

evergreen shrublands and woodlands, one should note

that these do not typically have exposed soils, contrary to

cropland during postharvest land preparation. Pixels

with no LSWI , 0.10 throughout the year were thus

considered to be natural evergreen vegetation and

therefore not included. Cloudy pixels are removed by

using the cloud quality pixel from MOD09A1, where

pixels affected by clouds were replaced with a temporary

fill interpolated from previous and next composites to

obtain a complete time series. Finally, to detect the

heading date of each field, we used the day of the max-

imum NDVI, following Wang et al. (2012).

c. Typhoon maximum wind speed (Wij)

The level of wind a field will experience during a

passing typhoon depends crucially on that field’s posi-

tion relative to the storm and the storm’s movement and

features. It thus requires explicit wind fieldmodeling. To

calculate the wind speed experienced because of ty-

phoons within each pixel, we use Boose et al.’s (2004)

version of the well-known Holland (1980) wind field

model. More specifically, the wind experienced at time t

because of typhoon j at any point P 5 i, that is, Wij, is

given by

W
ijt
5GF

�
V

m,jt
2 S[12 sin(T

aijt
)]
V

h,jt

2

�(�
R

m,j,t

R
it

�Bjt

3 exp

"
12

�
R

m,j,t

R
it

�Bjt

#)1/2

,
(9)

where Vm is the maximum sustained wind velocity

anywhere in the typhoon, T is the clockwise angle be-

tween the forward path of the typhoon and a radial line

from the typhoon center to the pixel of interest, P5i, Vh

is the forward velocity of the hurricane, Rm is the radius

of maximum winds, andR is the radial distance from the

center of the hurricane to point P. The remaining in-

gredients in (9) consist of the gust factor G and the

scaling parameters F, S, and B, for surface friction,

asymmetry due to the forward motion of the storm, and

the shape of the wind profile curve, respectively.

In terms of implementing (9), one should note that

Vm is given by the storm-track data described below,Vh

can be directly calculated by following the storm’s

movements between locations, and R and T are calcu-

lated relative to the pixel of interest P 5 i. All other

parameters have to be estimated or assumed. For in-

stance, we have no information on the gust wind factor

G. However, a number of studies (e.g., Paulsen and

Schroeder 2005) have measured G to be around 1.5, so

we also use this value. For S, we follow Boose et al.

(2004) and assume it to be 1. We also do not know the

surface friction to directly determine F. However,

Vickery et al. (2009) note that in open water the
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reduction factor is about 0.7 and reduces by 14% on the

coast and by 28% 50km inland. We thus adopt a re-

duction factor that linearly decreases within this range

as we consider points i further inland from the coast.

Finally, to determine B, we employ Holland’s (2008)

approximation method, whereas we use the parametric

model estimated by Xiao et al. (2009) to derive Rmax.

d. Regression model

Given their relatively small size, provincial rice

markets and production in the Philippines are un-

likely to be independent, thus potentially inducing

some spatial correlation in rice production and area

harvested.6 Importantly, neglecting such spatial cor-

relation in the dependent variable in a regression anal-

ysis can lead to biased and inconsistent estimates (see

LeSage 2008). As is common, we employ a Moran’s test

as a first indication whether spatial correlation may be a

feature of our data.

Another important aspect of our dataset is that it

consists of what is commonly known as ‘‘panel data,’’

that is, we have information about provinces over time.

Importantly, this allows one to take account of un-

observed factors that may be correlated with both the

outcome variable—in our case, rice production—and

the explanatory variable of interest, that is, the DA in-

dex, which could bias our estimated coefficient. More

specifically, with panel data, this can be taken into ac-

count by either demeaning all variables or by including a

set of unit-level (in our case, province-level) indicator

variables. One should note that controlling for province-

specific time-invariant unobservable effects means that

the estimated coefficients are to be interpreted in terms

of within provinces across time impacts rather than

across provinces.

In some parts of our analysis, we distinguish be-

tween irrigated and rainfed rice production. One

should emphasize in this regard that the satellite de-

tection technique described in section 2 does not allow

one to explicitly distinguish spatially between irri-

gated and rainfed rice fields. Thus in those regression

models where we examine the impact of typhoons on

these different agrisystem types, we assume that their

distribution across space is similar to that of all rice

fields within provinces. Under this assumption we can

use the provincial-level destruction index as repre-

sentative of the impact of typhoons on both rainfed

and irrigated rice fields.

In the context of potentially spatially correlated panel

data, we employ a spatial panel data estimationmodel. In

this regard, we employ a spatial Durban model (SDM),

which allows for spatially lagged dependent as well as

independent variables:7

y
it
5a1u�

n

j51

w
ij
y
jt
1 �

K

k51

x
itk
b
k

1 �
K

k51
�
n

j51

w
ij
x
jtk
u
k
1m

i
1g

t
1 y

it
, (10)

and wij are the elements of an exogenously chosen spa-

tial weight matrix of dimension n 3 n, of which the di-

agonal elements are zero and the off-diagonal elements

are the spatial weights. The quantity x is a vector of K

explanatory variables, m are the province-specific un-

observed time-invariant factors, g are the time-specific

effects, and y is an independent and identically distrib-

uted (iid) error term. An important component of the

spatial model is of course the spatial weighting matrix.

One popular option is a first-order contiguous neighbor

matrix, where weights are equal to 1 if neighbors are

contiguous of the first order and 0 otherwise. For the

case of the Philippines, restricting the definition of

neighbors to those that share common borders seems,

however, overly restrictive, since there are a lot prov-

inces that are essentially neighbors but are separated by

small bodies of waters (see Fig. 1). We thus opt for an

inverse distance weighting matrix, where weights are

defined as the inverse distance between the centroids of

regions. One should note that significance of the esti-

mated parameter u indicates the presence of spatial

correlation in the equation.

FIG. 1. Typhoon tracks during 2001–13.

6 Allen (2014) shows that there is considerable trade in rice

between provinces in the Philippines.

7We also tested whether a spatial error model might be prefer-

able to an SDM but found no evidence of this.
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e. Risk analysis

One of the goals of our analysis is to use our estimates

to provide an insight as to the probability of typhoon

destruction on rice. In considering the probabilities of

these losses, one should note that tropical cyclones are

events that can take on extreme values, and thus their

distribution function is by definition characterized by

heavy tails. Tropical storms as extreme events have

generally been studied using the peak over thresholds

model (see, e.g., Jagger and Elsner 2006), and we here

follow suit. The traditional approach in this regard, has

been to fit a generalized Pareto distribution (GPD) to

the data above a chosen threshold. However, as noted by

Scarrott and MacDonald (2010), the weakness of the

GPD threshold approach is that it does not take account

of the uncertainty associated with the choice of thresh-

old. As a consequence, a number of extreme value

mixture models have been proposed, which encapsulate

the usual threshold model in combination with a com-

ponent capturing the nonextreme distribution, also

known as the ‘‘bulk distribution.’’8 Here we employ the

parametric bulk model proposed by Behrens et al.

(2004), which involves fitting a gamma model for the

bulk distribution below the threshold and a GPD above

it, where the components of the two distributions are

spliced together at the threshold, which is treated as a

parameter to be estimated.

3. Data

a. Typhoon tracks

Our source for typhoon data is the Regional Spe-

cialized Meteorological Centre (RSMC) Best Track

Data, which has provided 6-hourly data on all tropical

cyclones in the west Pacific since 1951. We linearly

interpolate these to 3-hourly positions to be in con-

gruence with our rainfall data described below. We

also restrict the set of storms to those that came within

500 km of the Philippines and achieved typhoon

strength (at least 119 kmh21) at some stage within this

distance.9 In all, a total of 116 typhoon-strength storms

traversed the 500-km radius of the Philippines during

our sample period of 2001–13. These storm tracks are

shown in Fig. 1, where the darker portion of the tracks

indicates where the storms reached typhoon strength.

We also list the top 10 most powerful storms in terms of

maximum sustained wind speed in Table 1. As can be

seen, the maximum wind speed varied from storms like

Haiyan and Megi at 230 kmh21 to slightly weaker ones

standing at 205 kmh21 such as Songda and Durian.

One may want to note that most of these storms struck

in the latter half of our sample period, with amean year

of 2009.

b. Provincial rice data

Rice data are taken from the Philippine Bureau of

Agricultural Statistics Database (Philippine Statistics

Authority; available online at http://countrystat.psa.

gov.ph/). Production is available in total and dis-

aggregated by agrisystem (i.e., rainfed or irrigated) on a

quarterly basis at the province level. There are also data

on area harvested, from which one can then calcu-

late yields. Although these data series are complete,

there were occasions where provinces and subregions

of provinces were redefined over our sample period.

To have a complete and consistent series, we group-

ed these together where appropriate. We therefore

obtained a balanced panel of 78 provinces over our

sample period. Summary statistics of our provincial

quarterly production and area harvested data are given

in Table 2. As can be seen, the average quarterly rice

production is around 50 000 tons, but with considerable

variation. We also decompose the quarterly figures by

agrisystem. Accordingly, on average, about 75% of

production is from irrigated fields. The spatial distri-

bution of rice production and rice yields presented in

Figs. 2 and 310 show that the rice production is not

evenly distributed across provinces. Similarly, there

are considerable differences in rice yields across the

Philippines.

TABLE 1. Summary statistics for the top 10 most powerful storms.

Name

Max wind

speed (km h21) Year Month

Megi 230 2010 October

Haiyan 230 2013 November

Jangmi 215 2008 September

Jelawat 205 2012 September

Usagi 205 2013 September

Sepat 205 2007 August

Sanba 205 2012 September

Shanshan 205 2006 September

Songda 195 2011 September

Durian 195 2006 December

8Despite their obvious advantages, a major drawback with re-

gard to these newermodels nevertheless persists, namely, that their

asymptotic properties are still little understood.
9 Tropical cyclones generally do not exceed a diameter of

1000 km.

10 Since the spatial distribution of area harvested was not sig-

nificantly different from production, we do not depict this

graphically.

998 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55

http://countrystat.psa.gov.ph/
http://countrystat.psa.gov.ph/


c. Weather

To control for climatic influences, we consider data on

rainfall, water balance, temperature, and radiation.

Since rainfall estimates from weather stations are not

consistently available on a temporal scale or a spatial

scale for the Philippines, we instead use the satellite-

derived Tropical Rainfall Measuring Mission (TRMM)

adjusted merged-infrared precipitation product 3B42,

version 7 (Goddard Earth Sciences Data and Information

Services Center 2015). These provide 3-hourly pre-

cipitation estimates at a 0.258 3 0.258 spatial resolution.
To derive the daily water balance for each rice pixel in

our dataset, we use daily reference evapotranspiration

(ETo) data at 18 3 18 resolution from the Famine Early

Warning Systems Network (FEWS NET) global data

portal (USGS 2015) and daily rainfall from the TRMM

data to calculate the daily water balance during a rice

field season WB, which is calculated as the difference

between the two. We also extract minimum and maxi-

mum surface temperatures in degrees Celsius at 18 3 18
resolution using data from the Berkeley Earth Surface

Temperature (BEST) project (Rohde et al. 2013; NCAR

2015). Monthly solar radiation measured in watts per

meter squared at 18 3 18 resolution is obtained from the

Clouds and Earth’s Radiant Energy Systems (CERES)

Energy Balanced and Filled (EBAF) project (Loeb et al.

2009; Loeb and NCAR 2014).

4. Results and discussion

a. Rice field detection

Given that one needs at least one year of previous

observations to study the temporal variation of the

indices outlined above, our period of rice field de-

tection was limited to 2001–13. To this end, we found

1 539 881 different 500-m pixels that were occupied by

rice paddy fields at some point in time over our sample

period. The mean number of seasons was about 7, but

with considerable variability. As an example, we depict

the rice fields identified in 2013 and the start of their

growing season (in terms of quarter) in Fig. 4. There is

considerable spatial variation of rice fields both across

and within provinces, although all provinces have a

nonnegligible portion of area dedicated to rice plant-

ing for at least some part of the year. Examining the

TABLE 2. Summary statistics of provincial quarterly data.

Variable Unit Mean Std dev Max Min

Production—All ton 49 501 79 829 783 939 0

Production—Irrigated ton 37 141 63 099 677 885 0

Production—Rainfed ton 12 359 26 447 370 683 0

Area harvested ha 13 739 20 170 177 172 0

Yield ton ha21 3.4 0.8 6.2 1.1

WB mmh21 2.52 4.89 44.14 26.04

RAD Wm22 407.0 34.93 292.5 455.9

TMIN 8C 20.2 1.13 15.7 22.6

TMAX 8C 32.5 1.36 27.5 36.3

RAIN mm 7.0 4.5 0 49.8

DA — 0.055 0.126 0.921 0

DA 6¼ 0 — 0.098 0.155 0.921 3.11 3 109

FIG. 2. Rice production by province for 2013.
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distribution of growing season onset, one can note that

this also differs widely across as well as within prov-

inces. This further justifies our use of local field de-

tection methods to try to accurately capture potential

damage when a typhoon strikes.

Of course, the reliability of our analysis will depend on

the success of the outlined method in detecting rice

fields. In this regard one should note that the algorithm

is mainly designed for the identification of lowland rice

rather than upland rice. In the Philippines, over 95% of

rice is of the lowland variety, so that the lack of detection

of upland rice paddies is unlikely to play a significant

role (Xiao et al. 2006). However, Xiao et al. (2005) de-

veloped and verified their algorithm using field data

from China, so that one may still wonder about its ap-

propriateness for the Philippines. Reassuringly, a com-

parison between the satellite-detected fields with

extensive local field data from 24 provinces in 2770

locations undertaken by the International Rice Re-

search Institute (IRRI 2015) showed a nearly 80% ac-

curacy rate for the Philippines. As an auxiliary check, we

aggregated the area of rice fields across provinces and

quarters over our sample period and compared these to

quarterly provincial data on area harvested (see Fig. 5).

Accordingly, there is a clear positive correlation be-

tween the two data series. As a matter of fact, regressing

the area harvested on the satellite-detected rice field

area produced an R2 of 0.74. Considering all this evi-

dence together, we are fairly confident that our satellite

field detection procedure does not involve any excessive

amount of measurement error.

b. DA index

We used data from sections 3a through 3c to construct

our DA index for all typhoons since 2001. In doing so,

FIG. 3. Rice yields by province for 2013.
FIG. 4. Rice fields growth onset by quarter for 2013. Data are

from rice field detection methods (see section 2), and hatching

indicates no rice fields.
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we found that, out of the 116 typhoons that came within

500 km of the Philippines, 69 produced positive values

of DA. According to the summary statistics in Table 2,

the average quarterly value of DA was about 0.06; that

is, potentially about 6% of rice fields were impacted by

typhoons in every quarter since 2001. If we consider

only those quarters where there was a nonzero poten-

tial damage, our index suggests that when a typhoon

strikes it will affect about 10% of the rice fields on

average per quarter. The largest potential destruction

in any quarter was 92%: it occurred in the second

quarter of 2013 in the province Siquijor and was due to

Typhoon Utor.

One can also examine the value of DA for individual

provinces and storms. For instance, the province that

was on average most affected since 2001 was Kalinga

(DA 5 0.16), whereas the least impacted province was

Tawi-Tawi. In terms of damage per storm, on average,

the damaging storms over our sample period affected

about 5% of rice fields per quarter. The most de-

structive cyclone for rice fields was Utor (total DA 5
0.36),11 whereas Typhoon Haiyan was the second

most destructive typhoon in terms of rice fields (total

DA 5 0.26). One reason that Haiyan was less detri-

mental to rice than Utor despite being the stronger

storm—a maximum wind speed of 230 km h21 for the

former versus 195 kmh21 for the latter—might be

that Haiyan occurred at a time when most rice crops

were already harvested.

c. Regression results

As a first step, we conducted a Moran’s test of spatial

correlation for both rice production in each time period

and found strong evidence of spatial dependence for all

but two quarters. This supported our choice of using

spatial panel methods to conduct our regression analy-

sis. Our main regression results are given in Table 3. As

can be seen, the spatial term is significant in all

specifications,12 thus confirming spatial dependence for

provincial rice production. In terms of the actual esti-

mated coefficients on the explanatory variables, how-

ever, one should note that when f 6¼ 0, the estimated

parameters cannot be interpreted as marginal effects as

in conventional linear models. Instead, the direct effect

of a shock in an explanatory variable in a regional unit

will not only affect that region’s outcome variable di-

rectly, but may also have an indirect impact through

feedback effects from its impact on other regions. The

magnitude of this spillover effect will depend upon the

position of the region in space, the degree of connec-

tivity among region (as determined by the spatial weight

matrix), the spatial parameter r measuring the strength

of spatial dependence, and the magnitude of the esti-

mated coefficient estimates u and b. Given the difficulty

in interpreting the estimated coefficients, we instead

follow LeSage and Pace (2014) and calculate the mar-

ginal direct and indirect effects of our explanatory var-

iables for all estimations undertaken.

In terms of specifications, we first estimated (10) with

only the water balance variable WB, while also con-

trolling for time-invariant province-level fixed effects as

well as year and quarter indicator variables. The results

in the first numbered column of Table 3, with only WB,

indicate that there is a significant effect of water balance

on rice production. In other words, greater net water

availability in a region will increase rice production in

the region itself. In contrast, there are no indirect im-

pacts of water availability; that is, the water balance of

other regions does not induce a change in a region’s own

rice production. In the second column, we next in-

troduced our damage index DA. As can be seen, the

coefficient on this variable is negative and strongly sig-

nificant, suggesting that typhoons, by exposing rice fields

to strong winds and excessive rain, reduce the pro-

duction of paddy rice in the Philippines. As with water

balance, however, we find no evidence of spillover ef-

fects from other regions. We further experimented with

FIG. 5. Area harvested (hectares) vs rice field area detected

(pixels).

11 Utor struck the Philippines on 12 August 2013. It is esti-

mated to have affected a total of 398 813 people and resulted in

about $24.8 million (U.S. dollars) in damages, primarily to the

agricultural sector.

12 Throughout the text, we refer to significant coefficients as

those for which the null hypothesis that the coefficient is zero can

be rejected at least at the 5% level.
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including lagged values of our explanatory climatic

variables. One now discovers that the effect of water

balance is actually lagged rather than contemporary.

This may not be surprising given that water as an input is

particularly important during the flooding period of the

fields and may thus not show up until a quarter after a

field is likely to be harvested. Regarding the damage

index, in contrast, it is shown that the effect is only

contemporary. Again, considering when rice is most

sensitive to typhoons (that is, in the heading stage, which

occurs relatively late in the growing period), this result

may not be too surprising. One may also want to note

that when we include the lagged variables, we now also

find that there is an indirect effect of DA on rice pro-

duction. More specifically, the more damage a typhoon

induces in spatially close regions, the higher the pro-

duction in a specific region will be. Nevertheless, given

that this result is only significant at the 5% level and that

it is dependent on including a lagged value of DA, this

result is to be considered with some caution.

Data at the provincial level also separate rice pro-

duction into irrigated and rainfed cropping categories.

The results of rerunning our specification including up to

t21 lags for irrigated and rainfed rice are shown in col-

umns 4 and 5. For irrigated rice, results are similar to the

overall sample: water balance has a lagged effect, while

DA continues to have a negative and significant

contemporaneous impact. We again find that there is

now an indirect, although not completely robust, effect

of DA on rice production. Our results also suggest, un-

surprisingly, that rainfed rice is much more sensitive to

water balance, where we find both a contemporaneous

and lagged impact, and the coefficients are relatively

large. Similarly, as for irrigated rice, typhoons have a

significant negative contemporaneous effect on rainfed

rice production. Interestingly, the coefficient on this

variable is about 33% larger for rainfed rice. However,

in contrast to irrigated rice, there appear to be no in-

direct effects of DA. This may suggest that irrigation

technology is better able to deal with the potential

damage due to typhoons. For example, irrigation sys-

tems may be able to counteract the excessive flooding

during a storm. Nevertheless, it must be kept in mind

that our assumption about a similar spatial distribution

of rainfed and irrigated rice fields may be introducing

some measurement error in how well DA captures

damage across these two types and thus driving the

differences across agrisystem types.

We also experimented with other dependent vari-

ables. More specifically, since production is a function of

both area harvested and yields, it would be insightful to

see how these subcomponents might be affected by the

storms. The results for (logged) area harvested, shown

in column 6 of Table 3, indicate that the impact of

TABLE 3. Main regression results. The symbols ** and * depict 1% and 5% significance levels, respectively; standard errors are in

parentheses. Dep. 5 dependent; Prod. 5 production.

1 2 3 4 5 6 7 8 9

Sample All All All Irrigated Rainfed All All All All

Dep. variable ln(Prod.) ln(Prod.) ln(Prod.) ln(Prod.) ln(Prod.) ln(Area) Yield ln(Prod.) ln(Prod.)

Direct

WBt 0.020** 0.0199* 0.004 0.006 0.241** 0.011 20.021 0.007 0.007

(0.006) (0.008) (0.013) (0.012) (0.029) (0.012) (0.040) (0.011) (0.011)

WBt21 0.075** 0.052** 0.081** 0.075** 20.018 0.078** 0.078**

(0.015)) (0.012) (0.025) (0.014) (0.018) (0.016) (0.016)

DAt 21.1352** 20.832** 20.856** 21.284* 20.777** 20.877 20.879** 20.849**

(0.281) (0.233) (0.234) (0.617) (0.222) (0.587) (0.335) (0.319)

DAt21 0.316 0.467 21.317 0.357 20.176 20.032 0.041

(0.408) (0.364) (0.790) (0.381) (0.312) (0.210) (0.164)

Indirect

WBt 0.000 0.002 0.008 0.001 0.015 0.009 20.011 0.008 0.009

(0.005) (0.007) (0.011) (0.010) (0.012) (0.010) (0.028) (0.009) (0.009)

WBt21 20.013 20.006 20.004 20.014 0.016 20.011 20.011

(0.008) (0.008) (0.011) (0.008) (0.015) (0.009) (0.009)

DAt 0.242 0.215 0.366* 20.418 0.248 0.312 0.256 0.212

(0.202) (0.168) (0.175) (0.262) (0.158) (0.545) (0.207) (0.191)

DAt21 0.527 0.103 20.052 0.451 0.101 0.177 0.229

(0.341) (0.224) (0.288) (0.315) (0.350) (0.199) (0.183)

Spatial u 0.268** 0.270** 0.273** 0.272** 0.263** 0.271** 0.302** 0.272** 0.272**

(0.001) (0.004) (0.005) (0.004) (0.001) (0.005) (0.005) (0.005) (0.005)

Observations 2808 2808 2808 2808 2808 2808 2808 2808 2808

R2 0.03 0.04 0.04 0.04 0.15 0.05 0.002 0.04 0.04
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typhoons is similar to that of production, namely a

negative contemporaneous effect. In contrast, for yields,

as depicted in the last column, there is no significant

impact of typhoons. Thus, overall our results indicate

that the fall in production resulting from a typhoon is

due to decline in area harvested rather than in a drop

in yield.

Our DA index depends in part on the parameters a,

b, c, k, and m estimated by Masutomi et al. (2012)

based on Japanese data, which may not be exactly the

same for the Philippines. As noted earlier, we do not

have access to sufficient damage data to estimate these

directly for the Philippines. As an alternative, we in-

vestigated how changing these parameters might

change our estimated effect. More specifically, we

calculated the index first using the 5% confidence band

values of the estimated parameters and then the 95%

confidence band values, as provided byMasutomi et al.

(2012). The subsequent regression results are shown,

respectively, in columns 8 and 9 of Table 3. As can be

seen, for both regressions, the direct effect of DA re-

mains statistically significant. Moreover, there is only a

marginal difference in their size when compared with

the index we used so far, thus suggesting that our es-

timates are not too sensitive to the chosen parameters,

at least for values within a reasonable range.

Finally, we also tried including alternative climatic

explanatory factors. Following Welch et al. (2010)

and Zhang et al. (2010), we considered the effect of

minimum and maximum temperatures (TMIN and

TMAX), precipitation (RAIN), and radiation (RAD).

Additionally, as inspired by Peng et al. (2004), we

accounted for the codependent effect of temperature

and insolation by including the interaction term

TMIN3RAD. Since there was generally no evidence

of indirect effects, we only report the direct effects in

Table 4. Similarly to results in Table 3, results re-

garding the other explanatory variables are consistent

to our earlier specifications, namely that our damage

index significantly reduces production and area, but

that there is no effect on rice yields. For the other

independent variables, we find that TMIN and RAD

and their interaction term have a significant effect on

rice yields, whereas TMAX is insignificant. An in-

crease in minimum temperature is beneficial to rice

yield when radiation is low but detrimental when it

exceeds 393Wm22. Precipitation changes, however,

have a negative effect on rice yields only. When con-

sidering the impact on production and area harvested,

the effects of TMIN 3 RAD are inverse from the

impact on yields and the lag variables are significant,

suggesting an adaptation by farmer to weather con-

ditions detrimental to rice productivity.

d. Quantitative significance

Our results can be used to determine the recent

quantitative importance of typhoons for rice production

in the Philippines. For instance, using the mean quar-

terly total production and our estimated coefficient from

column 2, our estimates suggest that, on average, quar-

terly provincial losses were about 3090 tons over our

sample period. This constitutes about 6% of the average

provincial quarterly production of rice. Nationally, these

losses sum to a median loss of about 46 000 tons per

quarter, or a total of 12.5 million tons since 2001. More

generally, it is important to note that the implied figures

may not only account for damaged rice fields but could

also capture other indirect negative effects, such as

damage to infrastructure. Unfortunately, the lack of

data on the latter aspect does not allow us to disentangle

these other factors.

In terms of storm-specific damage, our estimates

suggest that each storm has on average reduced rice

production by 16 393 tons. In this regard, Typhoon Utor

caused the largest damage, totaling about 448 000 tons,

whereas, for example, Haiyan resulted in a reduction in

TABLE 4. As in Table 3, but for auxiliary regression results.

1 2 3

Sample All All All

Dep. variable ln(Prod.) ln(Area) Yield

Direct

TMINt 23.910* 24.589* 0.394**

(1.647) (1.789) (0.142)

TMINt21 28.881** 29.001** 20.321

(2.345) (2.364) (0.203)

TMAXt 0.294 0.361 20.031

(0.187) (0.197) (0.017)

TMAXt21 0.026 0.022 0.005

(0.099) (0.103) (0.015)

RADt 20.197* 20.229* 0.019*

(0.085) (0.092) (0.007)

RADt21 20.429** 20.436** 20.015

(0.108) (0.110) (0.009)

RAINt 20.306 20.241 20.066*

(0.167) (0.173) (0.029)

RAINt21 20.154 20.159 20.021

(0.108) (0.147) (0.031)

TMINt 3 RADt 0.009* 0.011* 20.001**

(0.004) (0.004) (0.000)

TMINt21 3 RADt21 0.021** 0.022** 0.001

(0.006) (0.006) (0.004)

DAt 20.627* 20.675* 20.001

(0.247) (0.280) (0.037)

DAt21 20.079 20.076 20.016

(0.452) (0.433) (0.036)

Spatial u 0.279** 0.282** 0.277**

(0.004) (0.007) (0.005)

Observations 2808 2808 2808

R2 0.04 0.04 0.01
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production of about 260 000 tons of rice. As an example

of the regional distribution of losses, we depict the

percentage of rice production lost due to Haiyan in

Fig. 6. Accordingly, much of the loss was in the southern

part of the country.

In considering how the implied losses stand relative

to what production could have been over time, it is

important to realize that there have been considerable

changes in production, area harvested, and yields over

our sample period. More specifically, examining the

aggregate data shows that production and yields have

grown by 42%, 17%, and 22%, respectively, since 2001.

Thus some of the losses in the earlier period may have

been small in part also because yields were smaller. To

take account of these changes in our loss estimations,

we thus used the coefficient estimated from the sixth

column of Table 3 to calculate the implied loss in har-

vested area, and then converted this to the current

equivalent of production by using the average yields by

province over 2009–13.13 This suggests that average

losses might have been much greater if past yields had

been as high as they are today. For instance, the aver-

age yield quarterly adjusted losses would have been

3325 tons, while the median quarterly and total na-

tional adjusted losses over our period would been

49 000 and 1.3 millions of tons, respectively. We depict

in Fig. 7 these adjusted losses relative to potential

production, which is measured as the average potential

production in that quarter over our sample period. As

can be seen, the quarterly impact varies considerably

over our sample period, with relatively loss heavy

FIG. 6. Distribution of damage to rice (production loss) due to Haiyan. Data are derived from

regression estimates (see section 3).

13 The assumption behind this approach is that rice farmers

would have planted the same number of fields even if they could

have benefitted from greater yields.
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quarters in the years 2006, 2008, 2010, and 2013. The

largest loss was estimated in the second quarter of

2008, where production was more than 25% below its

potential.

One can also compare our results with other climatic

shocks. More specifically, our estimated coefficients from

the second column in Table 3 suggests that a negative

shock to water availability—measured as one standard

deviation below the mean—causes a reduction of quar-

terly rice production of 4818 tons. In contrast, the average

damaging storm reduces rice production by 11039 tons. If

we take the effect of the lowest observed water balance

value relative to the mean, and compare this with the

largest provincial DA over our sample period, then the

effects are 8440 and 103520 tons, respectively.

e. Risk analysis

One can also use our results to provide an indication

of the losses expected in the near future. To this end, we

need to assume that weather, as it is relevant to the

formation of typhoons, remains similar to the last 13

years, so that we can use historical data to predict fu-

ture damage. In fitting the equation of the parametric

bulk model of Behrens et al. (2004) to our implied

losses from storms calculated earlier, the threshold was

found to be 106 021 tons, while the shape and scale

parameter were estimated as 0.289 and 113 142, re-

spectively. We used these fitted parameters to estimate

the return periods of typhoons inducing various levels

of damage and depict these in Fig. 8. As can be seen, the

return period increases with damage levels, although

at a decreasing rate. For instance, one should expect a

storm causing damages of about 150 000 tons every

5 years, whereas storms causing 400 000 tons are likely

every 50 years. In this regard, Typhoon Haiyan was

roughly a 1 in 13 year event. However, the accuracy of

the return period prediction decreases considerably as

one considers more extreme events. For instance, using

bootstrapped errors from 500 samples of our data with

replacement suggested that for damages of 57 000

tons—which our estimates suggests to be a 2-yr event—

the 95% confidence interval was between 1.3 and 2.3

years. For 260 000 tons of damages, that is, a 10-yr

event, the 95% confidence band was between 5 and

60 years.

5. Conclusions

We examined the impact of typhoons on rice pro-

duction at the province level in the Philippines. To this

end, we used satellite reflectance data to detect the

location and growth phases of rice fields. We then

employed typhoon-track data within a wind field model

and gridded rainfall data within a fragility curve to

drive a provincial rice damage index. Our spatial panel

regression model results showed that typhoons have

had a large significant impact on rice production, where

national losses since 2001 are estimated to have been

up to 12.5 million tons. Using extreme value theory to

derive return periods under similar weather conditions

to compare the relative differences between cyclones

suggested that a storm like the recent cycloneHaiyan—

estimated to have caused around production losses of

260 000 tons—is likely to recur every 10 years.

More generally, the methodology outlined here could

serve Philippine policymakers in making rapid assess-

ments of the likely losses soon after a typhoon occur-

rence, and therefore guiding their decision to import rice

production to counteract the production shortages. This

FIG. 7. Percent reduction in potential quarterly production. Data

are derived from regression estimates (see section 3).

FIG. 8. Estimated return period of damages. Data are derived from

risk analysis estimates (see section 3).
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technique would only require the use of publicly avail-

able satellite-derived information and the use of rea-

sonably simple algorithms as employed here. As a matter

of fact, the IRRI in the Philippines has already started

using satellite data to detect rice fields and used these

data to identify flooded areas after Typhoon Haiyan

(IRRI 2013). Related to this, the methodology em-

ployed here could potentially be used as the underlying

tool for introducing a rice insurance product where

payouts are triggered according to a parametric index

of typhoon-related damage. Again, the IRRI is in

the process of introducing the Remote Sensing-Based

Information and Insurance for Crops in Emerging

Economies (RIICE) to help reduce the vulnerability

of rice smallholder farmers in low-income countries

globally. The approach here could be one way to in-

corporate tropical cyclone events as part of such an

insurance product. Moreover, the need for such a

damage assessment technique may be arguably in-

creasing because of climate-change-induced altering

patterns of tropical cyclones and possibly greater ex-

posure due to economic growth in the future.

There are of course a number of aspects of the

analysis that could benefit from further work. First,

one would ideally like to estimate fragility curves

specific to the Philippines. This would require a more

comprehensive database of damage for individual

cyclones. Second, it must be noted that we were not

able to disentangle the effect of typhoons on rice

production from other production-reducing factors,

such as infrastructure. To isolate such aspects, one

would require spatially detailed time series data for

these factors.
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